Dihydrogen activation by a diruthenium analogue of the Fe-only hydrogenase active site.
نویسندگان
چکیده
The photochemical reaction of Ru2(S2C3H6)(CO)4(PCy3)2 (1) and H2 gives the dihydride Ru2(S2C3H6)(mu-H)(H)(CO)3(PCy3)2 (2). NMR and crystallographic studies reveal mutually trans basal phosphine ligands and both bridging and terminal hydrides. Ru2(S2C2H4)(CO)4(PCy3)2 behaves similarly. Other HX substrates undergo photoaddition to 1, affording Ru2(S2C3H6)(mu-H)(X)(CO)3(PCy3)2 for X = OTs (3a), Cl (3b), and SPh (3c). Treatment of Ru2(S2C3H6)(mu-H)(H)(CO)3(PCy3)2 with [H(OEt2)]BArF4 (ArF = B(C6H3-3,5-(CF3)2) in CD2Cl2 gives [Ru2(S2C3H6)(mu-H)(CO)3(PCy3)2(H2)]+ (4), which catalyzes H2-D2 exchange. The reaction of 2 with [D(OEt2)]BArF4 gave [Ru2(S2C3H6)(mu-H)(CO)3(PCy3)2(HD)]+ (JH-D = 31 Hz). These studies provide the first models for the Fe-only hydrogenases that bear dihydrogen and terminal hydrido ligands.
منابع مشابه
Intermolecular electron transfer from photogenerated Ru(bpy)3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site.
Visible light-driven intermolecular electron transfer was observed from a reduced species Ru(bpy)3+, photogenerated via a reductive quenching of the ruthenium photosensitizer by a diethyldithiocarbamate anion, to bioinspired [2Fe2S] model complexes of the iron-only hydrogenase active site. The results indicate that Ru(bpy)32+ can act as a photoactive functional model of the [4Fe4S] cluster, pla...
متن کاملReconstitution of [Fe]-hydrogenase using model complexes.
[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe(2+) is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. H...
متن کاملMechanistic and physiological implications of the interplay among iron-sulfur clusters in [FeFe]-hydrogenases. A QM/MM perspective.
Key stereoelectronic properties of Desulfovibrio desulfuricans [FeFe]-hydrogenase (DdH) were investigated by quantum mechanical description of its complete inorganic core, which includes a Fe(6)S(6) active site (the H-cluster), as well as two ancillary Fe(4)S(4) assemblies (the F and F' clusters). The partially oxidized, active-ready form of DdH is able to efficiently bind dihydrogen, thus star...
متن کاملJournal of Biological Inorganic Chemistry, 7 ( 3), 2002
The binding of carbon monoxide, a competitive inhibitor of many hydrogenases, to the active site of Desulfovibrio fructosovorans hydrogenase has been studied Journal of Biological Inorganic Chemistry, 7 ( 3), 2002 2 by infrared spectroscopy in a spectroelectrochemical cell. Direct evidence has been obtained of what redox states of the enzyme can bind extrinsic CO. Redox states A, B and SU do no...
متن کاملThe Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 41 شماره
صفحات -
تاریخ انتشار 2004